Како направити и обучити К-најближе комшије и К-Средства кластерисање МЛ модела у Питхону

Једна од најпопуларнијих апликација за машинско учење је у решавању проблема класификације.

Проблеми са класификацијом су ситуације у којима имате скуп података и желите да класификујете запажања из тог скупа података у одређену категорију.

Познати пример је филтер за нежељену пошту за добављаче е-поште. Гмаил користи надгледане технике машинског учења за аутоматско смештање имејлова у вашу фасциклу са нежељеном поштом на основу њиховог садржаја, теме и других функција.

Два модела машинског учења изводе већи део дизања тешког терета када је реч о проблемима класификације:

  • К-најближе комшије
  • К-значи груписање

Овај водич ће вас научити како да кодирате К-најближе комшије и алгоритме кластерисања К-средстава у Питхону.

К-Најближи модели суседа

Алгоритам К-најближих суседа један је од најпопуларнијих светских модела машинског учења за решавање проблема класификације.

Уобичајена вежба за студенте који истражују машинско учење је примена алгоритма К најближих суседа на скуп података где категорије нису познате. Пример из стварног живота би био ако требате да предвиђате користећи машинско учење на скупу података поверљивих државних података.

У овом упутству ћете научити да напишете своје прве К алгоритме машинског учења на Питхону. Радићемо са анонимним скупом података сличним горе описаној ситуацији.

Скуп података који ће вам требати у овом упутству

Прво што треба да урадите је да преузмете скуп података који ћемо користити у овом упутству. Отпремио сам датотеку на своју веб страницу. Можете му приступити кликом овде.

Сада када сте преузели скуп података, желећете да датотеку преместите у директоријум у коме ћете радити. Након тога отворите Јупитер бележницу и моћи ћемо да започнемо са писањем Питхон кода!

Библиотеке које ће вам требати у овом упутству

Да бисмо написали К алгоритам најближих суседа, искористићемо многе Питхон библиотеке отвореног кода, укључујући НумПи, панде и сцикит-леарн.

Започните своју Питхон скрипту тако што ћете написати следеће изјаве о увозу:

 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline 

Увоз скупа података у нашу Питхон скрипту

Наш следећи корак је увоз classified_data.csvдатотеке у нашу Питхон скрипту. Библиотека панди олакшава увоз података у пандас ДатаФраме.

Пошто се скуп података чува у csvдатотеци, користићемо read_csvметоду да бисмо то урадили:

 raw_data = pd.read_csv('classified_data.csv') 

Штампање овог ДатаФраме-а унутар ваше Јупитер бележнице даће вам осећај како подаци изгледају:

Панда ДатаФраме

Приметићете да ДатаФраме започиње неименованом колоном чије су вредности једнаке индексу ДатаФраме-а. То можемо поправити лаганим прилагођавањем наредбе која је увезала наш скуп података у Питхон скрипту:

 raw_data = pd.read_csv('classified_data.csv', index_col = 0) 

Даље, погледајмо стварне карактеристике садржане у овом скупу података. Можете да одштампате листу имена колона скупа података са следећом изјавом:

 print(raw_data.columns) 

Ово враћа:

 Index(['WTT', 'PTI', 'EQW', 'SBI', 'LQE', 'QWG', 'FDJ', 'PJF', 'HQE', 'NXJ', 'TARGET CLASS'], dtype="object") 

Будући да је ово класификовани скуп података, немамо појма шта значи било који од ових ступаца. За сада је довољно препознати да је свака колона нумеричке природе и да је стога погодна за моделирање техникама машинског учења.

Стандардизација скупа података

Будући да алгоритам К најближих суседа предвиђа тачку података користећи опажања која су јој најближа, размере карактеристика у скупу података су веома важне.

Због тога, практичари машинског учења обично standardizeпредстављају скуп података, што значи прилагођавање сваке xвредности тако да су приближно на истој скали.

Срећом, scikit-learnукључује изврсну функционалност да бисте то урадили са врло мало главобоље.

Да бисмо започели, мораћемо да увеземо StandardScalerкласу из scikit-learn. Додајте следећу наредбу у своју Питхон скрипту да бисте то урадили:

 from sklearn.preprocessing import StandardScaler 

Ова функција се понаша слично као LinearRegressionи LogisticRegressionкласе које смо раније користили у овом курсу. Желећемо да креирамо инстанцу ове класе, а затим уклопимо инстанцу те класе у наш скуп података.

Прво, креирајмо инстанцу StandardScalerкласе именоване scalerса следећом изјавом:

 scaler = StandardScaler() 

Ову инстанцу сада можемо обучити на нашем скупу података користећи fitметоду:

 scaler.fit(raw_data.drop('TARGET CLASS', axis=1)) 

Сада transformметоду можемо користити за стандардизацију свих карактеристика у скупу података тако да су отприлике исте скале. Ове промењене особине ћемо доделити променљивој са именом scaled_features:

 scaled_features = scaler.transform(raw_data.drop('TARGET CLASS', axis=1)) 

Ово заправо ствара НумПи низ свих карактеристика у скупу података, а ми желимо да уместо тога буде панда ДатаФраме.

Срећом, ово је једноставно решење. Једноставно ћемо умотати scaled_featuresпроменљиву у pd.DataFrameметоду и доделити овај ДатаФраме новој променљивој позваној scaled_dataса одговарајућим аргументом да одредимо имена колона:

 scaled_data = pd.DataFrame(scaled_features, columns = raw_data.drop('TARGET CLASS', axis=1).columns) 

Сада када смо увели свој скуп података и стандардизовали његове карактеристике, спремни смо да поделимо скуп података на податке о обуци и податке о тестовима.

Раздвајање скупа података у податке о обуци и податке о тестовима

Користићемо train_test_splitфункцију у scikit-learnкомбинацији са распакивањем листе да бисмо креирали податке о обуци и податке о тестовима из нашег скупа поверљивих података.

Прво ћете морати да увезете train_test_splitиз model_validationмодула scikit-learnса следећом изјавом:

 from sklearn.model_selection import train_test_split 

Даље, мораћемо да одредимо вредности xи yвредности које ће бити прослеђене у ову train_test_splitфункцију.

Тхе xвредности ће бити scaled_dataДатаФраме који смо претходно створили. Тхе yвредности ће бити TARGET CLASSстуб нашег оригиналног raw_dataДатаФраме.

Ове променљиве можете креирати са следећим изразима:

 x = scaled_data y = raw_data['TARGET CLASS'] 

Next, you’ll need to run the train_test_split function using these two arguments and a reasonable test_size. We will use a test_size of 30%, which gives the following parameters for the function:

 x_training_data, x_test_data, y_training_data, y_test_data = train_test_split(x, y, test_size = 0.3) 

Now that our data set has been split into training data and test data, we’re ready to start training our model!

Training a K Nearest Neighbors Model

Let’s start by importing the KNeighborsClassifier from scikit-learn:

 from sklearn.neighbors import KNeighborsClassifier 

Next, let’s create an instance of the KNeighborsClassifier class and assign it to a variable named model

This class requires a parameter named n_neighbors, which is equal to the K value of the K nearest neighbors algorithm that you’re building. To start, let’s specify n_neighbors = 1:

 model = KNeighborsClassifier(n_neighbors = 1) 

Now we can train our K nearest neighbors model using the fit method and our x_training_data and y_training_data variables:

 model.fit(x_training_data, y_training_data) 

Now let’s make some predictions with our newly-trained K nearest neighbors algorithm!

Making Predictions With Our K Nearest Neighbors Algorithm

We can make predictions with our K nearest neighbors algorithm in the same way that we did with our linear regression and logistic regression models earlier in this course: by using the predict method and passing in our x_test_data variable.

More specifically, here’s how you can make predictions and assign them to a variable called predictions:

 predictions = model.predict(x_test_data) 

Let’s explore how accurate our predictions are in the next section of this tutorial.

Measuring the Accuracy of Our Model

We saw in our logistic regression tutorial that scikit-learn comes with built-in functions that make it easy to measure the performance of machine learning classification models.

Let’s import two of these functions (classification_report and confuson_matrix) into our report now:

 from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix 

Let’s work through each of these one-by-one, starting with the classfication_report. You can generate the report with the following statement:

 print(classification_report(y_test_data, predictions)) 

This generates:

 precision recall f1-score support 0 0.94 0.85 0.89 150 1 0.86 0.95 0.90 150 accuracy 0.90 300 macro avg 0.90 0.90 0.90 300 weighted avg 0.90 0.90 0.90 300 

Similarly, you can generate a confusion matrix with the following statement:

 print(confusion_matrix(y_test_data, predictions)) 

This generates:

 [[141 12] [ 18 129]] 

Looking at these performance metrics, it looks like our model is already fairly performant. It can still be improved.

In the next section, we will see how we can improve the performance of our K nearest neighbors model by choosing a better value for K.

Choosing An Optimal K Value Using the Elbow Method

In this section, we will use the elbow method to choose an optimal value of K for our K nearest neighbors algorithm.

The elbow method involves iterating through different K values and selecting the value with the lowest error rate when applied to our test data.

To start, let’s create an empty list called error_rates. We will loop through different K values and append their error rates to this list.

 error_rates = [] 

Next, we need to make a Python loop that iterates through the different values of K we’d like to test and executes the following functionality with each iteration:

  • Creates a new instance of the KNeighborsClassifier class from scikit-learn
  • Trains the new model using our training data
  • Makes predictions on our test data
  • Calculates the mean difference for every incorrect prediction (the lower this is, the more accurate our model is)

Here is the code to do this for K values between 1 and 100:

 for i in np.arange(1, 101): new_model = KNeighborsClassifier(n_neighbors = i) new_model.fit(x_training_data, y_training_data) new_predictions = new_model.predict(x_test_data) error_rates.append(np.mean(new_predictions != y_test_data)) 

Let’s visualize how our error rate changes with different K values using a quick matplotlib visualization:

 plt.plot(error_rates) 
Графикон наших стопа грешака

As you can see, our error rates tend to be minimized with a K value of approximately 50. This means that 50 is a suitable choice for K that balances both simplicity and predictive power.

The Full Code For This Tutorial

You can view the full code for this tutorial in this GitHub repository. It is also pasted below for your reference:

 #Common imports import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline #Import the data set raw_data = pd.read_csv('classified_data.csv', index_col = 0) #Import standardization functions from scikit-learn from sklearn.preprocessing import StandardScaler #Standardize the data set scaler = StandardScaler() scaler.fit(raw_data.drop('TARGET CLASS', axis=1)) scaled_features = scaler.transform(raw_data.drop('TARGET CLASS', axis=1)) scaled_data = pd.DataFrame(scaled_features, columns = raw_data.drop('TARGET CLASS', axis=1).columns) #Split the data set into training data and test data from sklearn.model_selection import train_test_split x = scaled_data y = raw_data['TARGET CLASS'] x_training_data, x_test_data, y_training_data, y_test_data = train_test_split(x, y, test_size = 0.3) #Train the model and make predictions from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors = 1) model.fit(x_training_data, y_training_data) predictions = model.predict(x_test_data) #Performance measurement from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix print(classification_report(y_test_data, predictions)) print(confusion_matrix(y_test_data, predictions)) #Selecting an optimal K value error_rates = [] for i in np.arange(1, 101): new_model = KNeighborsClassifier(n_neighbors = i) new_model.fit(x_training_data, y_training_data) new_predictions = new_model.predict(x_test_data) error_rates.append(np.mean(new_predictions != y_test_data)) plt.figure(figsize=(16,12)) plt.plot(error_rates) 

K-Means Clustering Models

The K-means clustering algorithm is typically the first unsupervised machine learning model that students will learn.

It allows machine learning practitioners to create groups of data points within a data set with similar quantitative characteristics. It is useful for solving problems like creating customer segments or identifying localities in a city with high crime rates.

In this section, you will learn how to build your first K means clustering algorithm in Python.

The Data Set We Will Use In This Tutorial

In this tutorial, we will be using a data set of data generated using scikit-learn.

Let’s import scikit-learn’s make_blobs function to create this artificial data. Open up a Jupyter Notebook and start your Python script with the following statement:

 from sklearn.datasets import make_blobs 

Now let’s use the make_blobs function to create some artificial data!

More specifically, here is how you could create a data set with 200 samples that has 2 features and 4 cluster centers. The standard deviation within each cluster will be set to 1.8.

 raw_data = make_blobs(n_samples = 200, n_features = 2, centers = 4, cluster_std = 1.8) 

If you print this raw_data object, you’ll notice that it is actually a Python tuple. The first element of this tuple is a NumPy array with 200 observations. Each observation contains 2 features (just like we specified with our make_blobs function!).

Now that our data has been created, we can move on to importing other important open-source libraries into our Python script.

The Imports We Will Use In This Tutorial

This tutorial will make use of a number of popular open-source Python libraries, including pandas, NumPy, and matplotlib. Let’s continue our Python script by adding the following imports:

 import pandas as pd import numpy as np import seaborn import matplotlib.pyplot as plt %matplotlib inline 

The first group of imports in this code block is for manipulating large data sets. The second group of imports is for creating data visualizations.

Let’s move on to visualizing our data set next.

Visualizing Our Data Set

In our make_blobs function, we specified for our data set to have 4 cluster centers. The best way to verify that this has been handled correctly is by creating some quick data visualizations.

To start, let’s use the following command to plot all of the rows in the first column of our data set against all of the rows in the second column of our data set:

Табела наших вештачких података

Note: your data set will appear differently than mine since this is randomly-generated data.

This image seems to indicate that our data set has only three clusters. This is because two of the clusters are very close to each other.

To fix this, we need to reference the second element of our raw_data tuple, which is a NumPy array that contains the cluster to which each observation belongs.

If we color our data set using each observation’s cluster, the unique clusters will quickly become clear. Here is the code to do this:

 plt.scatter(raw_data[0][:,0], raw_data[0][:,1], c=raw_data[1]) 
Табела наших вештачких података

We can now see that our data set has four unique clusters. Let’s move on to building our K means cluster model in Python!

Building and Training Our K Means Clustering Model

The first step to building our K means clustering algorithm is importing it from scikit-learn. To do this, add the following command to your Python script:

 from sklearn.cluster import KMeans 

Next, lets create an instance of this KMeans class with a parameter of n_clusters=4 and assign it to the variable model:

 model = KMeans(n_clusters=4) 

Now let’s train our model by invoking the fit method on it and passing in the first element of our raw_data tuple:

 model.fit(raw_data[0]) 

In the next section, we’ll explore how to make predictions with this K means clustering model.

Before moving on, I wanted to point out one difference that you may have noticed between the process for building this K means clustering algorithm (which is an unsupervised machine learning algorithm) and the supervised machine learning algorithms we’ve worked with so far in this course.

Namely, we did not have to split the data set into training data and test data. This is an important difference - and in fact, you never need to make the train/test split on a data set when building unsupervised machine learning models!

Making Predictions With Our K Means Clustering Model

Machine learning practitioners generally use K means clustering algorithms to make two types of predictions:

  • Which cluster each data point belongs to
  • Where the center of each cluster is

It is easy to generate these predictions now that our model has been trained.

First, let’s predict which cluster each data point belongs to. To do this, access the labels_ attribute from our model object using the dot operator, like this:

 model.labels_ 

This generates a NumPy array with predictions for each data point that looks like this:

 array([3, 2, 7, 0, 5, 1, 7, 7, 6, 1, 2, 4, 6, 7, 6, 4, 4, 3, 3, 6, 0, 0, 6, 4, 5, 6, 0, 2, 6, 5, 4, 3, 4, 2, 6, 6, 6, 5, 6, 2, 1, 1, 3, 4, 3, 5, 7, 1, 7, 5, 3, 6, 0, 3, 5, 5, 7, 1, 3, 1, 5, 7, 7, 0, 5, 7, 3, 4, 0, 5, 6, 5, 1, 4, 6, 4, 5, 6, 7, 2, 2, 0, 4, 1, 1, 1, 6, 3, 3, 7, 3, 6, 7, 7, 0, 3, 4, 3, 4, 0, 3, 5, 0, 3, 6, 4, 3, 3, 4, 6, 1, 3, 0, 5, 4, 2, 7, 0, 2, 6, 4, 2, 1, 4, 7, 0, 3, 2, 6, 7, 5, 7, 5, 4, 1, 7, 2, 4, 7, 7, 4, 6, 6, 3, 7, 6, 4, 5, 5, 5, 7, 0, 1, 1, 0, 0, 2, 5, 0, 3, 2, 5, 1, 5, 6, 5, 1, 3, 5, 1, 2, 0, 4, 5, 6, 3, 4, 4, 5, 6, 4, 4, 2, 1, 7, 4, 6, 6, 0, 6, 3, 5, 0, 5, 2, 4, 6, 0, 1, 0], dtype=int32) 

To see where the center of each cluster lies, access the cluster_centers_ attribute using the dot operator like this:

 model.cluster_centers_ 

This generates a two-dimensional NumPy array that contains the coordinates of each clusters center. It will look like this:

 array([[ -8.06473328, -0.42044783], [ 0.15944397, -9.4873621 ], [ 1.49194628, 0.21216413], [-10.97238157, -2.49017206], [ 3.54673215, -9.7433692 ], [ -3.41262049, 7.80784834], [ 2.53980034, -2.96376999], [ -0.4195847 , 6.92561289]]) 

We’ll assess the accuracy of these predictions in the next section.

Visualizing the Accuracy of Our Model

The last thing we’ll do in this tutorial is visualize the accuracy of our model. You can use the following code to do this:

 f, (ax1, ax2) = plt.subplots(1, 2, sharey=True,figsize=(10,6)) ax1.set_title('Our Model') ax1.scatter(raw_data[0][:,0], raw_data[0][:,1],c=model.labels_) ax2.set_title('Original Data') ax2.scatter(raw_data[0][:,0], raw_data[0][:,1],c=raw_data[1]) 

This generates two different plots side-by-side where one plot shows the clusters according to the real data set and the other plot shows the clusters according to our model. Here is what the output looks like:

Табела предвиђања нашег модела

Although the coloring between the two plots is different, you can see that our model did a fairly good job of predicting the clusters within our data set. You can also see that the model was not perfect - if you look at the data points along a cluster’s edge, you can see that it occasionally misclassified an observation from our data set.

There’s one last thing that needs to be mentioned about measuring our model’s prediction. In this example ,we knew which cluster each observation belonged to because we actually generated this data set ourselves.

This is highly unusual. K means clustering is more often applied when the clusters aren’t known in advance. Instead, machine learning practitioners use K means clustering to find patterns that they don’t already know within a data set.

The Full Code For This Tutorial

You can view the full code for this tutorial in this GitHub repository. It is also pasted below for your reference:

 #Create artificial data set from sklearn.datasets import make_blobs raw_data = make_blobs(n_samples = 200, n_features = 2, centers = 4, cluster_std = 1.8) #Data imports import pandas as pd import numpy as np #Visualization imports import seaborn import matplotlib.pyplot as plt %matplotlib inline #Visualize the data plt.scatter(raw_data[0][:,0], raw_data[0][:,1]) plt.scatter(raw_data[0][:,0], raw_data[0][:,1], c=raw_data[1]) #Build and train the model from sklearn.cluster import KMeans model = KMeans(n_clusters=4) model.fit(raw_data[0]) #See the predictions model.labels_ model.cluster_centers_ #PLot the predictions against the original data set f, (ax1, ax2) = plt.subplots(1, 2, sharey=True,figsize=(10,6)) ax1.set_title('Our Model') ax1.scatter(raw_data[0][:,0], raw_data[0][:,1],c=model.labels_) ax2.set_title('Original Data') ax2.scatter(raw_data[0][:,0], raw_data[0][:,1],c=raw_data[1]) 

Final Thoughts

This tutorial taught you how to how to build K-nearest neighbors and K-means clustering machine learning models in Python.

Ако сте заинтересовани да сазнате више о машинском учењу, моја књига Прагматично машинско учење научиће вас практичним техникама машинског учења градећи 9 стварних пројеката. Књига је представљена 3. августа. Можете га предбиљежити за попуст од 50% користећи везу испод:

Прагматично машинско учење Машинско учење мења свет. Али увек је било тешко научити машинско учење ... до сада. Прагматично машинско учење је детаљни водич који ће вас научити основама машинског учења кроз изградњу 9 пројеката из стварног света. Научићете : Линеарна регресија, Логистичка регресија, ... Ницк МцЦуллум Гумроад

Ево кратког сажетка онога што сте сазнали о моделима најближих суседа у Питхону:

  • Како су класификовани подаци уобичајени алат који се користи за подучавање ученика како да реше своје прве К проблеме најближег суседа
  • Why it’s important to standardize your data set when building K nearest neighbor models
  • How to split your data set into training data and test data using the train_test_split function
  • How to train your first K nearest neighbors model and make predictions with it
  • How to measure the performance of a K nearest neighbors model
  • How to use the elbow method to select an optimal value of K in a K nearest neighbors model

Similarly, here is a brief summary of what you learned about K-means clustering models in Python:

  • How to create artificial data in scikit-learn using the make_blobs function
  • How to build and train a K means clustering model
  • That unsupervised machine learning techniques do not require you to split your data into training data and test data
  • How to build and train a K means clustering model using scikit-learn
  • Како визуализовати перформансе К значи алгоритам кластерисања када кластере знате унапред